UNIVERSITY COLLEGE LONDON

EXAMINATION FOR INTERNAL STUDENTS

MODULE CODE : MATH1202

MODULE NAME : Algebra 2

DATE : 02-May-07

TIME : 14:30

TIME ALLOWED : 2 Hours 0 Minutes

2006/07-MATH1202A-001-EXAM-205

©2006 University College London

TURN OVER

www.mymathscloud.com

All questions may be attempted but only marks obtained on the best four solutions will count.

The use of an electronic calculator is **not** permitted in this examination.

- 1. Let H be a subset of a group G. Give necessary and sufficient conditions for H to be a subgroup of G. In each of the following cases, determine if H is a subgroup of G or not, justifying your answer:
 - (i) $G = \mathbb{R} \{0\}$ under \times , $H = \{x \in G : x \ge 1\}$;
 - (ii) $G = \mathbb{R} \{0\}$ under $\times, H = \{\frac{1}{2}, 1, 2\};$
 - (iii) $G = \mathbb{R} \{0\}$ under \times , $H = \{2^i : i \in \mathbb{Z}\};$
 - (iv) G is any group, G_1 and G_2 are subgroups of G and $H = G_1 \cap G_2$;
 - (v) G is any group, $H = \{z \in G : zg = gz \text{ for all } g \in G\}.$
- 2. (a) Prove that if G is a finite group and H a subgroup, then |H| divides |G|.

(b) Prove that any subgroup of a cyclic group is cyclic. Find all subgroups of C_{10} , justifying your answer.

3. (a) Let A be an $n \times n$ matrix. Give the definition of det(A). State, without proof, the effect on the determinant of each type of elementary row operation.

(b) Evaluate det
$$\begin{pmatrix} 2 & 1 & 1 & 1 \\ 1 & -1 & 1 & -1 \\ 3 & 0 & 2 & 1 \\ 0 & 2 & -1 & 0 \end{pmatrix}$$
.

(c) Find det
$$\begin{pmatrix} 1 & 1 & 1 & 1 \\ a & b & c & d \\ a^2 & b^2 & c^2 & d^2 \\ a^3 & b^3 & c^3 & d^3 \end{pmatrix}$$
, expressing your answer as a product

1

of linear factors. MATH1202

PLEASE TURN OVER

www.mymathscloud.com

- 4. (a) Let A be an $n \times n$ matrix over \mathbb{R} . Give the definition of:
 - (i) an eigenvalue λ of A;
 - (ii) an eigenvector \mathbf{v} of A;
 - (iii) the characteristic polynomial $c_A(t)$ of A;
 - (iv) A is diagonalizable (over \mathbb{R}).

State a necessary and sufficient criterion, in terms of eigenvectors, for a matrix to be diagonalisable.

(b) Prove that if A has n distinct eigenvalues, then A is diagonalisable.

(c) Give an example of (i) a 2×2 matrix which is not diagonalizable (ii) a 3×3 matrix with two distinct eigenvalues which is diagonalizable, justifying your anwers.

5. Let $A = \begin{pmatrix} 7 & -12 \\ 2 & -3 \end{pmatrix}$.

(i) Find an invertible matrix P such that $P^{-1}AP$ is diagonal.

(ii) Find A^n (for positive integers n).

(iii) Solve the system of differential equations

$$\begin{array}{rcl} x_1' &=& 7x_1 &-& 12x_2 \\ x_2' &=& 2x_1 &-& 3x_2 \end{array}$$

given that $x_1(0) = 1$, $x_2(0) = 0$.

6. (a) Define what it means to say that \langle , \rangle is an *inner product* on a real vector space V. Prove that if \langle , \rangle is an inner product on V, then, for all $\mathbf{u}, \mathbf{v} \in V, \langle \mathbf{u}, \mathbf{v} \rangle \leq |\mathbf{u}| |\mathbf{v}|$.

(b) Let $A = \begin{pmatrix} 0 & -2 & -2 \\ -2 & 3 & 4 \\ -2 & 4 & 3 \end{pmatrix}$. that $P^{-1}AP$ is diagonal.

Find an orthogonal matrix P such

MATH1202

END OF PAPER

www.mymathscloud.com